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Abstract
Ranking is used for a wide array of problems, most notably information retrieval (search). There are a number of popular approaches
to the evaluation of ranking such as Kendall’s τ , Average Precision, and nDCG. When dealing with problems such as user ranking
or recommendation systems, all these measures suffer from various problems, including inability to deal with elements of the same
rank, inconsistent and ambiguous lower bound scores, and an inappropriate cost function. We propose a new measure, rankDCG, that
addresses these problems. This is a modification of the popular nDCG algorithm. We provide a number of criteria for any effective
ranking algorithm and show that only rankDCG satisfies all of them. Results are presented on constructed and real data sets. We release
a publicly available rankDCG evaluation package.

Keywords: RankDCG, Rank Measure, Ranking, Ordering, Evaluation

1. Introduction

Every algorithm needs to be assessed to determine its per-
formance. No single measure can be applied to all prob-
lems. If we consider a single area of computer science nat-
ural language processing (NLP), each problem requires a
specific evaluation method. For example, for a simple clas-
sification task, accuracy is an intuitive and useful measure
(Dumais et al., 1998; Katerenchuk et al., 2014). For named
entity recognition and other “detection” tasks with a rela-
tively small percent of relevant items (Tjong Kim Sang and
De Meulder, 2003; Katerenchuk and Rosenberg, 2014), F-
measure (Rijsbergen, 1979) is best suited. Correlation mea-
sures such as Pearson’s r (Pearson, 1895) and Spearman’s
ρ (Spearman, 1904) are used to find relationships between
entities (Strapparava and Mihalcea, 2008; Schuller et al., ).
Kendall’s τ (Kendall, 1938), Average Precision (AP) (Zhu,
2004), Mean Average Precision (MAP) and Discounted Cu-
mulative Gain (DCG) (Järvelin and Kekäläinen, 2002) are
all used in information retrieval (IR) and ranking type of
problems (Lapata, 2006; Philbin et al., 2007; Järvelin and
Kekäläinen, 2000).

Despite a large number of different ranking measures, there
are still problems that cannot be appropriately evaluated. In
particular, when the task is to rank discrete value elements
with multiple ties of the same rank and a skewed rank dis-
tribution. This type of problem often arises in a number of
ranking problems such as information retrieval or search.
While some measures address parts of this problem, none
addresses all of them.

In this paper, we propose a new measure to deal with rank-
ordering problems. We start with defining the problem and
criteria that need to be satisfied in section 2. In Section 3
we give a short survey of available evaluation measures. In
Section 4. we propose rankDCG, an improved evaluation
measure and evaluate its performance in Section 5. We sum
up our findings and conclude our work in Section 6.

2. Ordering
The problem of ordering is well known. It involves tasks
such as internet search. The objectives are to find and order
information from a near infinite set of data, namely web
pages. Formally it can be defined as follows:

Given a list of elements A = [x1, x2, x3, ..., xn],
objective is to find list B = [x|x ∈ A, f(x) > 0],
where f(x) is a relevance function that returns
a rank that is higher or equal to 0. Often addi-
tional objective is applied such as B = [f(x1) >
f(x2) > f(x3) > ... > f(xm)] where m is a
number of relevant document with f(x) > 0 and
m ≤ n.

In order to evaluate this problem, a comparison between
two lists, a reference and a hypothesis, is needed. Rele-
vance and ordering are the two prime factors that need to
be considered. Because most measures were designed for
IR tasks, the relevance of elements plays a crucial role in
determining the evaluation score lower bound. In other
words, if all elements in the hypothesis list are irrelevant,
the score should be equal to 0 or some other lower bound.

In this paper, we consider an ordering problem that often
appears in real word problems such as recommendation
systems and user ranking. These tasks might appear identi-
cal to the web search problem. However, there is a number
of distinct characteristics. First of all, each element is rel-
evant (no irrelevant entities). Second, the element ranks
are discrete values. Third, the rank values are not unique.
In other words, there are many elements of the same rank
(multiple ties). Lastly, the elements might not follow the
normal distribution of rank values. This case is also com-
mon to web search where only very few top results are rel-
evant and the majority are somewhat related or not relevant
to the query at all. Formally the problem can be described
in the following way:



Given a list of elements A = [x1, x2, x3, ..., xn],
objective is to find list B = [f(x1) ≥ f(x2) ≥
f(x3) ≥ ... ≥ f(xn)] where f(x) is a rank func-
tion that returns rank r with r ∈ N and n is a
number of elements.

All conventional evaluation measures have a number of
shortcomings while evaluating this type of problem. For
this reason, we propose a set of criteria that an evaluation
measure. This measure needs to address the following ob-
jectives:

1. correctly work with multiple ties

2. address non-normal rank value distribution

3. emphasize correct ordering of high rank elements

4. produce consistent and meaningful scoring range

In the next section, we will survey available algorithms and
highlight some drawbacks of the most common rank evalu-
ation measures.

3. Evaluation Measures Survey
Multiple rank-ordering evaluation metric algorithms exist
in the field of information retrieval (IR). However, none of
them is appropriate for the task described in the previous
chapter. Keeping in mind the specifics of the problem, we
survey various metrics, analyze their performance, and un-
derline drawbacks.

3.1. F-measure
F-measure or F-score (Rijsbergen, 1979) is a common eval-
uation measure that is used to measure IE algorithms such
as search (Peng and McCallum, 2006). This measure is de-
fined as follows:

F = 2 ∗ p ∗ r
p+ r

,

where p - precision and r - recall

F-measure takes into account precision and recall. Preci-
sion measures the portion of retrieved elements that are rel-
evant. Recall measures the portion of relevant elements that
were discovered. However, this measure is not appropri-
ate for problems where all elements are relevant. In addi-
tion, this measure does not take into consideration different
ranks. F-measure only evaluates the number of relevant el-
ements. Therefore, it is not suitable for a rank-ordering
evaluation.

3.2. Average Precision and Mean Average
Precision

Average Precision (AP) (Zhu, 2004) is a measure that is
designed to evaluate IR algorithms. AP can deal with non-
normal rank distribution, where the number of elements of
some rank is dominant. AP measures precision at each ele-
ment, multiplies the change in recall from the previous step,
and averages over all list elements. There exists a variation

of AP that takes into consideration only the first k elements.
However, since we are concerned with a ranking of all el-
ements, we will not focus on this variant. The formula to
calculate the AP is the following:

AP =

n∑
k=1

P (k) ∗∆R(k)

where P (k) = precision@k and ∆R(k) =
|recall(k − 1)− recall(k)|.

Researchers often use mean average precision (MAP) (liu,
2009), which is defined as the mean of AP over multiple
information retrieval lists.

MAP =

∑
q∈Q

AP (q)

|Q|
,

where Q = a set of ordering problems and q = a single
evaluation instance.

Both AP and MAP measures have been designed to eval-
uate rank-ordering problems. The measures, however, as-
sume no ties among ranks which manifests in inconsistent
lower bounds. Furthermore, these measures evaluate all
rank values with equal cost. However, the problem de-
scribed in Section 2 requires more emphasis on ordering
of rare high-rank elements and less for low-rank elements
since these elements are not as important and often over-
represented. This creates a problem where misplacing a
low-rank element can produce a low score, despite the fact
that this element might not be very relevant to an otherwise
a good ordering result. More detail of this case can be found
in Section 5.

3.3. Kendall’s τ
Kendall’s τ (Kendall, 1938) is a correlation measure. This
measure is often used when evaluating rank-ordering re-
sults. The measure considers the number of element pairs in
reference and hypothesis lists and checks whether the ele-
ment positions correlate. The formal definition of Kendall’s
τ is shown below:

τ =
c− d

1
2n(n− 1)

,

where c - a number of concordant (i.e. a correct relative
ranking) pairs and d - a number of discordant (i.e. an
incorrect relative ranking) pairs.

Kendall’s τ is a popular choice for rank evaluation. Unfor-
tunately, this measure also has some drawbacks. First of all,
it does not explicitly deal with multiple ties and non-normal
rank distribution. This will lead to a problem when an al-
gorithm assigns the same (majority) rank value to all ele-
ments. Secondly, Kendall’s τ does not produce a consistent



lower bound score when the ranks follow a non-normal dis-
tribution. In addition, the score is produced by comparing
the number of correlated elements and it does not empha-
size rare high-rank elements. For these reasons, Kendall’s
τ is not the best choice to evaluate rank-ordering problems
defined in Section 2.

3.4. Discounted Cumulative Gain
Among all evaluation measures, Discounted Cumulative
Gain (DCG) (Järvelin and Kekäläinen, 2002) has multi-
ple advantageous characteristics to address a rank-ordering
problem mentioned in the previous section. For this rea-
son, it is often used in research (Lapata, 2006; Philbin et
al., 2007; Järvelin and Kekäläinen, 2000). The main dis-
tinction of DCG from others measures is the ability to ad-
dress non-normal rank distribution by assigning a higher
cost to high-rank elements. This emphasizes the high-rank
element identification. The formal definition of DCG is de-
fined below:

DCG =

n∑
i=1

rel(xi)

log2(i+ 1)
,

where n - a number of elements and rel() - some relevance
function of the i-th element in a given list.

For comparison across multiple tasks, a normalized variant
of DCG, nDCG, is calculated in the following way:

nDCG =
DCG

IDCG
,

where IDCG - represents the ideal DCG.

This evaluation also has drawbacks. The first drawback
is this evaluation metric was designed for information re-
trieval rather than ordering evaluation. This means that
this measure considers the number of relevant and irrele-
vant documents. Since all elements in the rank-ordering
task defined in Section 2. are relevant, the measure’s lower
bound is never equaled to zero. As a result, the range of pre-
diction is from 1 in the best case ordering to some arbitrary
number between 1 and 0. This factor makes results hard
to understand because an nDCG score of 0.56 might be the
worst case ordering. Another drawback is the cost function
puts too much stress on the high-rank element identifica-
tion. The cost function was designed in this way inten-
tionally to bring more relevant search results closely to the
top. However, the rank-ordering problem needs a relative
function with respect to the rest of the elements. Lastly,
standard DCG produces different cost based on the element
positioning. For example a list [9,1,1] will have different
costs for [1,9,1] and [1,1,9]. However, we contend that the
two lists are equally wrong because the algorithm decided
that element of rank 9 is rank 1. The permutations inside
rank subgroup should not matter in the evaluation process.

4. Rank Discounted Cumulative Gain
In this section, we present a novel measure which we call
rank discounted cumulative gain (rankDCG). This measure
is a modified version of the popular nDCG algorithms.
From Section 3., we can see that conventional evalua-
tion measures fall short from addressing evaluation criteria.
In particular, a good measure for rank-ordering problems
needs to address the following:

1. multiple ties

2. non-normal rank value distribution

3. emphasis on high-rank elements

4. consistent scoring range

In order to demonstrate our algorithm, we start with con-
structing an example problem. The list L that is shown be-
low, is ordered by rank values. In other words, each element
represents an output from rel(i), a relevance function. The
rank values are discrete and the list contains multiple ties of
elements with the same rank. In addition, the element rank
distribution is non-normal.

L = [91, 42, 43, 24, 25, 26, 17, 18, 19, 110]

The first property rankDCG needs to address is non-normal
rank distribution. From the Section 3., we saw that most
rank measures, with the exception of DCG, do not have
a way to distinguish between low-rank and high-rank
elements in the scoring function. For this reason, we
consider a number of cost functions that are similar to
the DCG definition. We experiment with four different
functions performed on list L and plot them in figures 1-4.
The x-axis of each plot is the element order in list L and the
y-axis is a cost generated from the experimental functions.

We start with an analysis of two cost functions: the
standard DCG cost function and a modified version used
in (Burges et al., 2005). From the Figures 1 and 2, we can
see that both functions put more than half of their weight
on the correct identification of the highest element. This
can introduce bias toward finding the top-rank element
rather than ordering. To address this issue, we design a
function rel′(i) that produces an element rank based on
the number of unique element ranks in the list. The list
L contains ten relative rank values, but only four unique
values. We create a mapping function to assign a unique
rank based on the rank subgroup. In other words, the
top-rank element is equal to the size of the element rank
set, |{L}|. Every following distinct element-rank will have
its rank decreased by one. The results are plotted in Figure
3. In this case, given list L to the function rel′(i) we get a
corresponding list L′ with the following ranks:

L′ = [41, 32, 33, 24, 25, 26, 17, 18, 19, 110]

In addition to the above modification, we modify the
discounting factor in the denominator of the DGC formula.
DCG’s discounted factor relies on the position of each



Figure 1: Cost function: rel(i)
log(i+1) Figure 2: Cost function: 2rel(i)−1

log(i+1)

Figure 3: Cost function: rel′(i)
i

Figure 4: Cost function: rel′(i)
rev rel′(i)

element, and this implies that the last four value of L′ list
will produce different costs. Instead of using the elements’
position, we find that reversed mapping order of rel′()
function works the best for discounted factor. The mapping
between elements in L′ and the discounted factors are
represented in list D and the final cost function is shown
in Figure 4. This discounted factor creates a step-wise
function that eliminates a chance of getting a different
score from permutations inside element subgroups.

D = [11, 22, 23, 34, 35, 36, 47, 48, 49, 410]

At this point the cost function is the following:

DCG′ =

n∑
i=1

rel′(i)

rev rel′(i)
,

where n - a number of elements, rel′(i) - cost function that
takes L and creates L’ and rev rel′(i) - reversed rel’(i)
function that takes L and creates discounted factor for each
element that is shown in list D.

At last, we normalize DCG′ to create a meaningful and
consistent lower bound. The final normalized version of
rankDGC is defined below:

rankDCG =
DCG′ −min(DCG′)

max(DCG′)−min(DCG′)

Python implementation of rankDCG is available for down-
load at our website (http://speech.cs.qc.cuny.edu).

5. Experiments
In this section, we show that rankDCG satisfies all the ob-
jectives and outperforms conventional rank-ordering mea-
sures on the constructed and the real data. The specified
objectives are the following:

1. correctly work with multiple ties

2. address non-normal rank value distribution

3. emphasize correct ordering of high-rank elements

4. produce consistent and meaningful scoring range

5.1. Constructed data
We evaluate the behavior of rankDCG in seven possible
scenarios: 1) perfect ordering, 2) misplacing low-rank ele-
ments, 3) misplacing a high-rank element with a medium
rank element, 4) and 5) misplacing high and lows rank
elements, and 6) the worst case (reversed ordering). All the
experiments are conducted on the list L = [9, 4, 4, 2, 2, 2,
1, 1, 1, 1] defined in the previous section and hypothesis
list in Table 1. The results can be found in Table 1.

From the table, you can see that only rankDCG satisfies our
criteria. Starting with the objective 1, we can see that only
Kendall’s τ and rankDCG address it properly. The score
of comparing reference list L and lists 4 and 5 from the
table produce the same score. This fact brings robustness



# Hypothesis List Kendall’s τ AveP nDCG rankDCG
1 [9, 4, 4, 2, 2, 2, 1, 1, 1, 1] 1.0 1.0 1.0 1.0
2 [9, 4, 4, 2, 2, 1, 2, 1, 1, 1] 0.8 0.887 0.998 0.975
3 [4, 4, 2, 9, 2, 2, 1, 1, 1, 1] 0.742 0.454 0.825 0.65
4 [1, 4, 4, 2, 2, 2, 9, 1, 1, 1] 0.285 0.659 0.688 0.325
5 [1, 4, 4, 2, 2, 2, 1, 1, 1, 9] 0.285 0.697 0.667 0.325
6 [1, 1, 1, 1, 2, 2, 2, 4, 4, 9] -0.8 0.149 0.571 0.0

Table 1:

to possible element permutations inside a subgroup of
elements with the same rank.

The second and third objectives are the ability to deal with
a non-normal distribution and emphasize correct ordering
of rare, top-rank, and elements. RankDCG produces the
most accurate cost function. This can be observed by
comparing reference list L to lists 2, 3 and 4 in the table.
In the case of the comparison with list 2, most measures
produced reasonable results. NDCG puts little cost on
misidentifying low-rank elements. This score follows my
rankDCG, with AveP and τ being the harshest score of
0.8 for miss-ordering low-rank element. On the other
hand, τ puts very little cost on misplacing the top element
(0.742). This fact makes high-rank element ordering of a
lesser importance. If we look at case 4, we can see that
AveP gives a higher score of 0.650 for placing the top-rank
element into the lowest-rank group, compare to 0.454
score for placing the same element into a better subgroup.
Among all score variations, rankDCG fits right in the
middle with the scoring cost function and produces a linear
score decrease with worse ordering case.

Finally, due to the initial application of the surveyed mea-
sures in the IR area, none of the measures satisfies the lower
bound requirement. This can be observed in the case 6. In
case 6, the worst case ordering (reverse), all measures pro-
duce scores that are difficult to understand. The score from
τ and AveP show that the results are not good, but not the
worst possible case. NDCG’s score can be interpreted as
a good result by a person not familiar with the measure or
the task. RankDCG is the only measure that produces a
comprehensive worst case score.

5.2. Real data
One real world problem where common measures fall short
is user ranking. This task involves ranking users according
to their community rank. We are looking at the Reddit
website (www.reddit.com). Reddit is a website where users
create posts on different topics or share resources such as
pictures, videos, or links to other resources. Users can
participate in discussions through creating threads of com-
ments. Each comment can earn comment karma, which is
Reddit’s form of approval. We consider data from politics
subreddit. We rank users from five randomly chosen
subreddits that contain at least one-hundred comments. On
average, each subreddit contains 129.8 users. Using NLP
algorithms, we analyze the comments and predict user rank
(karma index) based on text analysis. This problem is very
challenging and the results are far from perfect. However,

to demonstrate shortcomings of popular rank-measures we
create four tests: 1) we limit the data and produce a bad
ranking prediction using limited part-of-speech analysis,
2) a slightly better rank predictions using LIWC word list
(Pennebaker et al., 2001), 3) further improved ranker using
n-gram approach, and 4) the perfect prediction, comparing
the reference with itself. The results can be found in Table
2.

# Kendall’s τ AveP nDCG rankDCG
1 nan 0.79 0.883 0.0
2 0.197 0.668 1.188 0.32
3 0.136 0.585 1.318 0.347
4 0.5 1 1 1

Table 2:

From the Table 2, we can see a few interesting cases. In
the first case, the rank-ordering algorithm based on limited
data outputs the majority class. As a result, we can see
that Kendall’s τ cannot deal with this case while AveP and
nDCG returned seemingly good results. In the second case,
with a slightly better ranking model, all measures show im-
provement. nDCG returns a score higher than one because
the algorithms overpredict high ranks. The third case, a
better model, perceives the results as worse than the results
from the second case by Kendall’s τ and AveP. nDCG, on
the other hand, produces a higher than 1 score. In the last
fourth case, the perfect ordering, all measures, with the ex-
ception of Kendall’s τ , produce correct scoring. After con-
sidering all the cases, we can see that only rankDCG shows
consistent evaluation scores with a gradual improvement of
the algorithm and meaningful lower and upper bounds.

6. Conclusion
In this paper, we present rankDCG, a rank-ordering eval-
uation measure. RankDCG is a modification of popular
nDCG algorithm that addresses some shortcomings of com-
mon evaluation measures. While there is a number of pop-
ular evaluation measures available, we show that they can-
not properly evaluate ranking problems with discrete val-
ues, multiple ties, and nonlinear rank distribution. In this
work, we define criteria that a good evaluation measure
needs to submit and show that among popular measures
only rankDCG satisfies it. We release rankDCG evalua-
tion package to the public as a part of this work and make
it available on github1.

1https://github.com/dkaterenchuk/ranking measures
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